
Operating Systems
Lecture 14

fs design
Prof. Mengwei Xu

11/29/24 Mengwei Xu @ BUPT 2

I/O & Storage Layers

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service
streams

handles

registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Operations, Entities and Interface

file_open, file_read, … on struct file * & void *

we are here …

11/29/24 Mengwei Xu @ BUPT 3

Layered abstractions of I/O and storage

Application

Library

File System

Block Cache

Device Driver

Memory-Mapped I/O,
DMA, Interrupts

Physical Devices

stdio: fopen(), fclose(), fread(), fwrite()

syscall: open(), close(), read(), write()

Data block ops between storage and memory

How files and directories are organized in
memory and disk

Caching blocks in memory; write buffering,
synchronization.

Block device interface: a standard interface for different I/O
devices to R/W in fixed-sized blocks (e.g., 512 bytes).

Translate I/O abstractionsinto device-specific I/O operations

Memory-mapped I/O: maps each device’s control registers to a range of physical addresses on the
memory bus. For example, the OS knows last key pressed by keyboard in a physical address.
Direct Memory Access: copy a block of data between storage and memory.
Interrupts are needed so OS knows when I/O device completes its request (otherwise use polling).

11/29/24 Mengwei Xu @ BUPT 4

• File Descriptors – as OS object representing the state of a file
- User has a “handle” on the descriptor

Recall: C Low level I/O

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int create (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:
• Access modes (Rd, Wr, …)
• Open Flags (Create, …)
• Operating modes (Appends, …)

Bit vector of Permission Bits:
• User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

11/29/24 Mengwei Xu @ BUPT 5

• File Descriptors – as OS object representing the state of a file
- User has a “handle” on the descriptor

Recall: C Low level I/O

ssize_t read (int filedes, void *buffer, size_t maxsize)
 - returns bytes read, 0 => EOF, -1 => error
ssize_t write (int filedes, const void *buffer, size_t size)
 - returns bytes written
off_t lseek (int filedes, off_t offset, int whence)
 - set the file offset
 * if whence == SEEK_SET: set file offset to “offset”
 * if whence == SEEK_CRT: set file offset to crt location + “offset”
 * if whence == SEEK_END: set file offset to file size + “offset”
int fsync (int fildes)
 – wait for i/o of filedes to finish and commit to disk
void sync (void) – wait for ALL to finish and commit to disk

• When write returns, data is on its way to disk and can be read,
but it may not actually be permanent!

11/29/24 Mengwei Xu @ BUPT 6

• File System: Layer of OS that transforms block interface of disks (or
other block devices) into Files, Directories, etc.

• File System Components
- Naming: Interface to find files by name, not by blocks
- Disk Management: collecting disk blocks into files
- Protection: Layers to keep data secure
- Reliability/Durability: Keeping of files durable despite crashes, media failures,

attacks, etc.

Building a File System

11/29/24 Mengwei Xu @ BUPT 7

• User’s view:
- Durable Data Structures

• System’s view (system call interface):
- Collection of Bytes (UNIX)
- Doesn’t matter to system what kind of data structures you want to store

on disk!
• System’s view (inside OS):

- Collection of blocks (a block is a logical transfer unit, while a sector is the
physical transfer unit)

- Block size ³ sector size; in UNIX, block size is 4KB

User vs. System View of a File

11/29/24 Mengwei Xu @ BUPT 8

• What happens if user says: give me bytes 2—12?
- Fetch block corresponding to those bytes
- Return just the correct portion of the block

• What about: write bytes 2—12?
- Fetch block
- Modify portion
- Write out Block

• Everything inside File System is in whole size blocks
- For example, getc(), putc() Þ buffers something like 4096 bytes, even if

interface is one byte at a time
• From now on, file is a collection of blocks

Translating from User to System View

File
System

11/29/24 Mengwei Xu @ BUPT 9

• Basic entities on a disk:
- File: user-visible group of blocks arranged sequentially in logical space
- Directory: user-visible index mapping names to files

• Access disk as linear array of sectors. Two Options:
- Identify sectors as vectors [cylinder, surface, sector], sort in cylinder-major order

q Used in BIOS, but not in OSes anymore
- Logical Block Addressing (LBA,逻辑块寻址): Every sector has integer address

from zero up to max number of sectors
- Controller translates from address Þ physical position

qFirst case: OS/BIOS must deal with bad sectors
qSecond case: hardware shields OS from structure of disk

Disk Management Policies (1/2)

11/29/24 Mengwei Xu @ BUPT 10

• Need way to track free disk blocks
- Link free blocks together Þ too slow today
- Use bitmap to represent free space on disk

• Need way to structure files: File Header
- Track which blocks belong at which offsets within the logical file structure
- Optimize placement of files’ disk blocks to match access and usage patterns

Disk Management Policies (2/2)

11/29/24 Mengwei Xu @ BUPT 11

• Named permanent storage

• Contains
- Data

qBlocks on disk somewhere
- Metadata (Attributes)

qOwner, size, last opened, …
qAccess rights
• R, W, X
• Owner, Group, Other (in Unix systems)
• Access control list in Windows system

File

…

Data blocks

File descriptor
Fileobject (inode)
Position

File handle

11/29/24 Mengwei Xu @ BUPT 12

• Basically a hierarchical structure

• Each directory entry is a collection of
- Files
- Directories

qA link to another entries

• Each has a name and attributes
- Files have data

• Links (hard links) make it a DAG, not just a tree
- Softlinks (aliases) are another name for an entry

Directory

11/29/24 Mengwei Xu @ BUPT 13

• Conventions of directory
• Root directory (根目录):“/”
• Home directory (主目录):“~/cur_dir/file.txt”
• Absolute path (绝对路径):“/home/mwx/cur_dir/file.txt”
• Relative path (相对路径):“file.txt”

• Volume (卷): a collection of physical storage resources that form a
logical storage device. Could be a part of or many physical devices.

• Mount (挂载): an operation that creates a mapping from some path in
the existing file system to the root directory of the mounted volume’s
file system

mount –t type device dir

Directory

11/29/24 Mengwei Xu @ BUPT 14

Directory

mwx@Dragon21:~$ findmnt -t ext4
TARGET SOURCE FSTYPE OPTIONS

/ /dev/sda6 ext4 rw,relatime,errors=remount-ro
├─/data2 /dev/sdc ext4 rw,relatime
├─/data /dev/sdb1 ext4 rw,relatime
├─/var/lib/snapd /dev/sdc[/zl/snap/snapd] ext4 rw,relatime
└─/boot /dev/sda1 ext4 rw,relatime

11/29/24 Mengwei Xu @ BUPT 15

• What factors are critical to the design choices?
• Durable data store => it’s all on disk
• (Hard) Disks Performance !!!

- Maximize sequential access, minimize seeks
• Open before Read/Write

- Can perform protection checks and look up where the actual file resource are, in
advance

• Size is determined as they are used !!!
- Can write (or read zeros) to expand the file
- Start small and grow, need to make room

• Organized into directories
- What data structure (on disk) for that?

• Need to allocate / free blocks
- Such that access remains efficient

Designing a File System …

11/29/24 Mengwei Xu @ BUPT 16

• Open performs Name Resolution
- Translates pathname into a “file number”

q Used as an “index” to locate the blocks
- Creates a file descriptor in PCB within kernel
- Returns a “handle” (another integer) to user process

• Read, Write, Seek, and Sync operate on handle
- Mapped to file descriptor and to blocks

Components of a file system

file name
offset directory

file number
offset index structure

Storage block

11/29/24 Mengwei Xu @ BUPT 17

• An inode is a data structure on a filesystem on Linux and other Unix-
like operating systems that stores all the information about a file except
its name and its actual data.
- File type
- Permissions
- Owner ID
- Group ID
- Size of file
- Time last accessed
- Time last modified
- Soft/Hard Links
- Access Control List (ACLs)

inode

11/29/24 Mengwei Xu @ BUPT 18

• An inode is a data structure on a filesystem on Linux and other Unix-
like operating systems that stores all the information about a file except
its name and its actual data.
- File type
- Permissions
- Owner ID
- Group ID
- Size of file
- Time last accessed
- Time last modified
- Soft/Hard Links
- Access Control List (ACLs)

inode

11/29/24 Mengwei Xu @ BUPT 19

• An inode is a data structure on a filesystem on Linux and other Unix-
like operating systems that stores all the information about a file except
its name and its actual data.

• Each file has exactly one corresponding one inode? (i.e., 1-1 mapping)
- True for most traditional Unix-like filesystems
- No true with hard links (covered later)

• When a file is copied – a new inode
• When a file is moved – nothing changed

- Unless to another filesystem

inode

11/29/24 Mengwei Xu @ BUPT 20

• For 32-bit inode number, it’s 2^32 (about 4 billions)
- Max

• It’s also configurable in many file systems

• Out of inode error..

How Many inodes in Linux

11/29/24 Mengwei Xu @ BUPT 21

• open system call:
- Resolves file name, finds file control block (inode)
- Makes entries in per-process and system-wide tables
- Returns index (called “file handle”) in open-file table

In-Memory File System Structures

11/29/24 Mengwei Xu @ BUPT 22

• read/write system calls:
- Use file handle to locate inode
- Perform appropriate reads or writes

In-Memory File System Structures

11/29/24 Mengwei Xu @ BUPT 23

• FAT (Microsoft File Allocation Table), 1970s.
- Extremely simple index structure: a linked list.
- Still widely used in devices like flash memory sticks and digital cameras

• FFS (Unix Fast File System), 1980s.
- Tree-based multilevel index to improve random access efficiency.
- Uses a collection of locality heuristics to get good spatial locality.
- EXT2 and EXT3 are based on FFS.

• NTFS (Microsoft NewTechnology File System): 1990s.
- More flexible tree structure.
- Mainstream file system on MS.
- It’s representative to EXT4, XFS, and Apple’s Hierarchical File Systems (HFS and

HFS+).

Typical File Systems

11/29/24 Mengwei Xu @ BUPT 24

• Directories: naming data
- How do we convert a file name to the file number?

• Files: finding data
- How do we locate storage block based on file number?

• Virtual file systems (VFS)
- How do we make different FSs work together easily?

Goals for Today

file name
offset directory

file number
offset index structure

Storage block

11/29/24 Mengwei Xu @ BUPT 25

• Directories: naming data
- How do we convert a file name to the file number?

• Files: finding data
- How do we locate storage block based on file number?

• Virtual file systems (VFS)
- How do we make different FSs work together easily?

Goals for Today

file name
offset directory

file number
offset index structure

Storage block

11/29/24 Mengwei Xu @ BUPT 26

• Directory is treated as a file with a list of <file name: file number>
mappings
• The file number of the root directory is agreed ahead of time

- In many Unix FSs, it’s 2.

Directory Structure

11/29/24 Mengwei Xu @ BUPT 27

• Stored in files, can be read, but typically don’t
- System calls to access directories
- open / creat traverse the structure
- mkdir /rmdir add/remove entries
- link / unlink (rm)

qLink existing file to a directory
• Not in FAT !

qForms a DAG

• When can file be deleted?
- Maintain ref-count of links to the file
- Delete after the last reference is gone

• libc support
- DIR * opendir (const char *dirname)
- struct dirent * readdir (DIR *dirstream)
- int readdir_r (DIR *dirstream, struct dirent *entry,
 struct dirent **result)

Directory Operations

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

/usr/lib/foo

11/29/24 Mengwei Xu @ BUPT 28

• Early implementations simply stored linear lists of <file name, file
number> in directory files.
- Free spaces are for new entries. Note: files can be added/deleted.

• Works fine in most cases. But when there are thousands of files in a
directory..The access could be slow!

Directory Internals

11/29/24 Mengwei Xu @ BUPT 29

• Modern FSs (Linux XFS, Microsoft
NTFS, and Oracle ZFS) organize
directory’s contents as a tree.
- B/B+ tree: fast lookup, insert, and

removal
- Names are first hashed into a key,

which is used to find the file
number in the tree

Directory Internals

Logical View

Physical View

11/29/24 Mengwei Xu @ BUPT 30

• How many disk accesses to resolve “/my/book/count”?
- Read in file header for root (fixed spot on disk)
- Read in first data block for root

qTable of file name/index pairs. Search linearly – ok since directories typically very small
- Read in file header for “my”
- Read in first data block for “my”; search for “book”
- Read in file header for “book”
- Read in first data block for “book”; search for “count”
- Read in file header for “count”

• Current working directory: Per-address-space pointer to a directory (inode)
used for resolving file names
- Allows user to specify relative filename instead of absolute path (say CWD=“/my/book”

can resolve “count”)

Directory Structure Access Cost

11/29/24 Mengwei Xu @ BUPT 31

• ln command – link()
- It creates another name in the directory you are creating the link to, and refers it

to the same inode number of the original file.

Hard Link

prompt> echo hello > file
prompt> cat file
hello
prompt> ln file file2
prompt> cat file2
hello
prompt> ls -i file file2
67158084 file
67158084 file2
prompt> rm file
removed ‘file’
prompt> cat file2
hello

11/29/24 Mengwei Xu @ BUPT 32

• ln command – link()
- It creates another name in the directory you are creating the link to, and refers it

to the same inode number of the original file.
- OS maintains a reference count for each inode.

Hard Link

prompt> echo hello > file
prompt> stat file
... Inode: 67158084 Links: 1 ...
prompt> ln file file2
prompt> stat file
... Inode: 67158084 Links: 2 ...
prompt> stat file2
... Inode: 67158084 Links: 2 ...
prompt> ln file2 file3
prompt> stat file
... Inode: 67158084 Links: 3 ...
prompt> rm file
prompt> stat file2
... Inode: 67158084 Links: 2 ...

11/29/24 Mengwei Xu @ BUPT 33

• ln -s command – soft (or symbolic) link()
- A special type of file (as against regular file/dir) whose contents are the

pathname of the linked-to file.

Soft Link

prompt> echo hello > file
prompt> ln -s file file2
prompt> cat file2
hello

prompt> ls -al
drwxr-x--- 2 remzi remzi 29 May 3 19:10 ./
drwxr-x--- 27 remzi remzi 4096 May 3 15:14 ../
-rw-r----- 1 remzi remzi 6 May 3 19:10 file
lrwxrwxrwx 1 remzi remzi 4 May 3 19:10 file2 -> file

11/29/24 Mengwei Xu @ BUPT 34

• ln -s command – soft (or symbolic) link()
- A special type of file (as against regular file/dir) whose contents are the he

pathname of the linked-to file.

Soft Link

prompt> echo hello > alongerfilename
prompt> ln -s alongerfilename file3
prompt> ls -al alongerfilename file3
-rw-r----- 1 remzi remzi 6 May 3 19:17 alongerfilename
lrwxrwxrwx 1 remzi remzi 15 May 3 19:17 file3 -> alongerfilename

11/29/24 Mengwei Xu @ BUPT 35

• ln -s command – soft (or symbolic) link()
- A special type of file (as against regular file/dir) whose contents are the he

pathname of the linked-to file.
- Dangling reference

Soft Link

prompt> echo hello > file
prompt> ln -s file file2
prompt> cat file2
hello
prompt> rm file
prompt> cat file2
cat: file2: No such file or directory

11/29/24 Mengwei Xu @ BUPT 36

Hard Link vs. Soft Link (Symlink)

There will be link count

11/29/24 Mengwei Xu @ BUPT 37

• When shall I use hard link
- I don’t want to increase inode number.
- I want the linked file/directory keep working even when the original

file/directory is deleted.
- Version control.

• When shall I use soft link
- I want to link to a directory.

qUsing hard link to directory might result in cycle in the directory tree.
- I want to link to files in other disk partitions.

qBecause inode numbers are only unique within a particular file system,
not across file systems.

- Shortcuts.

Hard Link vs. Soft Link (Symlink)

11/29/24 Mengwei Xu @ BUPT 38

• Directories: naming data
- How do we convert a file name to the file number?

• Files: finding data
- How do we locate storage block based on file number?

• Virtual file systems (VFS)
- How do we make different FSs work together easily?

Goals for Today

file name
offset directory

file number
offset index structure

Storage block

11/29/24 Mengwei Xu @ BUPT 39

• FAT is a linked list as 1-1 map with blocks
- Represented as a list of 32-bit entries
- Older versions use fewer bits

• Each entry in FAT contains a pointer to
the next FAT entry of the same file
- Or a special END_OF_FILE value.
- The file number is the 1st (or root) index of

the block list for the file
• For File No. #i, its

- 1st data block index: i
- 2nd data block index: *(FAT[i])
- 3rd data block index: *(*(FAT[i]))
- ..

FAT (File Allocation Table)

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

file number

11/29/24 Mengwei Xu @ BUPT 40

• FAT is a linked list as 1-1 map with blocks
- Represented as a list of 32-bit entries

• Where is FAT stored?
- On Disk, on boot cache in memory,

second (backup) copy on disk

• Free space: FAT free list, i.e., FAT[i] = 0.
• To find a free block: scanning through FAT.

FAT (File Allocation Table)

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

file number

11/29/24 Mengwei Xu @ BUPT 41

• FAT is a linked list as 1-1 map with blocks
- Represented as a list of 32-bit entries

• Locality (storing a file in sequential blocks) is
important for fast I/O
- Sequential I/O is much faster than random I/O
- Imagine you want to append 100MB to a 200MB file.. FS

cannot guarantee they are stored sequential
• How to ensure good locality heuristics in FAT?

- Simple strategy: next fit, i.e., scans sequentially through the
FAT starting from the last entry that was allocated and
return the next free entry

- Still, there will be increasing fragment
- Defragmentation tool: read files and rewrite them to new

locations with better locality

FAT (File Allocation Table)

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

file number

11/29/24 Mengwei Xu @ BUPT 42

• FAT is a linked list as 1-1 map with blocks
- Represented as a list of 32-bit entries

• Locality (storing a file in sequential blocks) is
important for fast I/O
- Sequential I/O is much faster than random I/O
- Imagine you want to write 100MB to a 200MB file.. FS

cannot guarantee they are stored sequential
• How to ensure good locality heuristics in FAT?

- Simple strategy: next fit, i.e., scans sequentially through
the FAT starting from the last entry that was allocated
and return the next free entry

- Still, there will be increasing fragment
- Defragmentation tool: read files and rewrite them to

new locations with better locality

FAT (File Allocation Table)

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

file number

11/29/24 Mengwei Xu @ BUPT 43

• FAT is a linked list as 1-1 map with blocks
- Represented as a list of 32-bit entries

• READ: just get block by block with FAT
• WRITE

- Get blocks from free list
- Linking them into a file

• Format a disk
- Zero the blocks, link up the FAT free list

• Quick format
- Link up the FAT free-list

FAT (File Allocation Table)

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

file number

11/29/24 Mengwei Xu @ BUPT 44

• Poor locality: there will be fragmentations
• Poor random access: needs to traverse the file’s FAT entries till the block

is reached
• File metadata stored in directory entries, therefore being limited

- Only has file’s name, size, and creation time, but cannot specify the file’s owner
or group.

• Limitations on volume and file size
- With top 4 bits reserved.
- 2^28 blocks * 4KB block size = 1TB.
- Larger block size (up to 256KB)?
- File size is encoded in 32 bits, so less than 4GB.

FAT Issues

11/29/24 Mengwei Xu @ BUPT 45

• No support for hard links: hard to maintain a link count.
- FAT does not use inode.

FAT Issues

/home/foo1/file1 /home/foo2/file2 /home/foo1/file1 /home/foo2/file2

FAT Other Filesystems

inode
ref_count: 2

11/29/24 Mengwei Xu @ BUPT 46

• Original inode format appeared in BSD 4.1
- Berkeley Standard Distribution Unix
- Similar structure for Linux Ext2/3

• File Number is index into inode arrays
• Multi-level index structure

- Great for little and large files
- Asymmetric tree with fixed sized blocks

Unix File System (1/2)

11/29/24 Mengwei Xu @ BUPT 47

• Metadata associated with the file
- Rather than in the directory that points to it

• UNIX Fast File System (FFS) BSD 4.2 Locality Heuristics:
- Block group placement
- Reserve space

• Scalable directory structure

Unix File System (2/2)

11/29/24 Mengwei Xu @ BUPT 48

• Multi-level index
- Fixed, asymmetric tree

File Attributes

11/29/24 Mengwei Xu @ BUPT 49

File Attributes

User
Group
9 basic access control bits
 - UGO x RWX
Setuid bit
 - execute at owner permissions
 rather than user
Setgid bit
 - execute at group’s permissions

11/29/24 Mengwei Xu @ BUPT 50

File Attributes

User
Group
9 basic access control bits
 - UGO x RWX
Setuid bit
 - execute at owner permissions
 rather than user
Setgid bit
 - execute at group’s permissions

11/29/24 Mengwei Xu @ BUPT 51

File Attributes

12x Direct Pointers (直接索引)

4kB blocks Þ
sufficient for files up to 48KB

11/29/24 Mengwei Xu @ BUPT 52

File Attributes

Indirect pointers
 - point to a disk block
 containing only pointers

4 kB blocks => 1024 ptrs
Indirect Pointer (一级间接索引)

=> 4 MB
Double Indirect Pointer (二级..)
 => 4 GB
Triple Indirect Pointer (三级..)

=> 4 TB

48 KB

+4 MB

+4 GB

+4 TB

11/29/24 Mengwei Xu @ BUPT 53

• Tree structure. Each file is represented as a tree, which allows the
file system to efficiently find any block of a file.
• High degree. The FFS tree uses internal nodes with many children.

- A 4KB file block contains 1024x blockID in 4 bytes.
- Improves sequential reads and writes.Why?

• Fixed structure. The FFS tree has a fixed structure.
- For a given configuration of FFS, the first set of d pointers always point to the

first d blocks of a file; etc.
- Make implementation easier.

• Asymmetric. FFS’s tree structure is asymmetric, i.e., different depths.
- Small files can be stored with low cost (size and access speed).
- While we still support very large files.

FFS Characteristics

11/29/24 Mengwei Xu @ BUPT 54

• In a symmetric tree with each entry to be triple indirect pointers

ÞTo store a 4B file, how much space we need?

Asymmetric vs. Symmetric

11/29/24 Mengwei Xu @ BUPT 55

• In a symmetric tree with each entry to be triple indirect pointers

ÞTo store a 4B file, how much space we need?
- 4B data + small inode + 3x 4KB indirect blocks
- How about our asymmetric tree?

Asymmetric vs. Symmetric

11/29/24 Mengwei Xu @ BUPT 56

• In a symmetric tree with each entry to be triple indirect pointers

ÞTo store a 4B file, how much space we need?
- 4B data + small inode + 3x 4KB indirect blocks
- How about our asymmetric tree?

Asymmetric vs. Symmetric

A file with 4 blocks, each
block accessed directly

11/29/24 Mengwei Xu @ BUPT 57

• FFS can support sparse files, in which one or more ranges of empty
space are surrounded by file data.
- Those empty space shall not consume disk space.

Sparse Files

<= A sparse file with 4KB data at
offset 0, and 4KB data at offset 230.

Command ls shows it takes 1.1GB.
Command du shows it takes 16KB.

11/29/24 Mengwei Xu @ BUPT 58

• FFS allocates a bitmap with one bit per storage block. The i-th bit in the
bitmap indicates whether the i-th block is free or in use.
• The position of FFS’s bitmap is fixed when the file system is formatted.

- So it is easy to find the part of the bitmap that identifies free blocks near any
location of interest.

Free Space Management

11/29/24 Mengwei Xu @ BUPT 59

• In early UNIX and DOS/Windows’ FAT file system, headers stored in
special array in outermost cylinders

• Header not stored anywhere near the data blocks
- To read a small file, seek to get header, seek back to data

• Fixed size, set when disk is formatted
- At formatting time, a fixed number of inodes are created
- Each is given a unique number, called an “inumber”

Where are inodes Stored?

11/29/24 Mengwei Xu @ BUPT 60

• Later versions of UNIX moved the header information to be
closer to the data blocks
- Often, inode for file stored in same “cylinder group” as parent directory of the

file (makes an ls of that directory run fast)
• Pros:

- UNIX BSD 4.2 puts bits of file header array on many cylinders
- For small directories, can fit all data, file headers, etc. in same cylinder Þ no

seeks!
- File headers much smaller than whole block (a few hundred bytes), so multiple

headers fetched from disk at same time
- Reliability: whatever happens to the disk, you can still find many of the files (even

if directories disconnected)
• Part of the Fast File System (FFS)

- General optimization to avoid seeks

Where are inodes Stored?

11/29/24 Mengwei Xu @ BUPT 61

• Block group placement: FFS places data to optimize for the
common case where a file’s data blocks, a file’s data and metadata, and
different files from the same directory are accessed together.

• Reserved space: FFS reserves some fraction of the disk’s space (e.g.,
10%) and presents a slightly reduced disk size to applications.
- When disk is full, there’s little opportunity for file system to optimize locality.
- Sacrifices a little disk capacity for better locality thus reduced seek times.

Locality Heuristics

11/29/24 Mengwei Xu @ BUPT 62

• File system volume is divided into a set of
block groups
- Small seek time

• Data blocks, metadata, and free space
are distributed to different block
- Avoid huge seeks between

user data and system structure

Block Group Placement

11/29/24 Mengwei Xu @ BUPT 63

• Files in the same directory are placed
in the same block group
- The same for the “directory file” as well
- i.e., when a new file is created, find an inode

number within the block where its directory
resides and give it to the file.

q Unless there’s no free inode number in that block

• But don’t put the directory and its sub-
directory together
- Though they might have locality, it will easily fill

the block.

Block Group Placement

11/29/24 Mengwei Xu @ BUPT 64

• First-Free allocation of new
file blocks
- To expand file, first try

successive blocks in bitmap, then
choose new range of blocks

- Few little holes at start, big
sequential runs at end of group

- Avoids fragmentation
- Sequential layout for big files

Block Group Placement

11/29/24 Mengwei Xu @ BUPT 65

UNIX 4.2 BSD FFS First Fit Block Allocation

11/29/24 Mengwei Xu @ BUPT 66

Example: read the file /foo/bar/baz
1. Read “/” root inode #2’s inode, get block #912
2. From block #912, get inode #31 for “foo”
3. From inode #31, get block #194
4. From block #194, get inode #73 for “bar”
5. From inode #73, get block #991
6. From block #991, get inode #40 for “baz”
7. From inode #40, get 3 data blocks

- Block 310
- Block 919
- Block 301

Put All Things Together (FFS)

11/29/24 Mengwei Xu @ BUPT 67

Carving Up the Disk

Master
boot record

Partition table

Partition 1 Partition 2 Partition 3 Partition 4

Entire disk

Boot
block

Super
block

Free space
management

Index
nodes Files & directories

• Boot block: the initial bootstrap program to load OS
• Super block: describes the state of the file system: the total size

of the partition, the block size, pointers to a list of free blocks,
inode number of the root directory, magic number, etc

11/29/24 Mengwei Xu @ BUPT 68

• Pros
- Efficient storage for both small and large files
- Locality for both small and large files
- Locality for metadata and data
- No defragmentation necessary!

• Cons
- Inefficient for tiny files (a 1 byte file requires both an inode and a data block)
- Inefficient encoding when file is mostly contiguous on disk
- Need to reserve 10-20% of free space to prevent fragmentation

FFS Summary

11/29/24 Mengwei Xu @ BUPT 69

• New Technology File System (NTFS)
- Default on Microsoft Windows systems

• Variable length extents
- Rather than fixed blocks

• Everything (almost) is a sequence of <attribute (属性):value> pairs
- Meta-data and data

• Mix direct and indirect freely

• Directories organized in B-tree structure by default

NTFS

11/29/24 Mengwei Xu @ BUPT 70

• Master File Table
- Database with flexible 1KB entries for metadata/data
- Variable-sized attribute records (data or metadata)
- Extend with variable depth tree (non-resident attribute,非常驻属性)

• Extents – variable length
contiguous regions
- Block pointers cover

runs of blocks
- Similar approach in

Linux (ext4)
- File create can provide

 hint as to size of file
• Journaling for reliability

- Discussed later

NTFS

http://ntfs.com/ntfs-mft.htm

11/29/24 Mengwei Xu @ BUPT 71

NTFS Small File

Std. Info. File Name Data (resident) (free)

MFT Record (small !le)

Master File Table

Create time, modify time, access time,
Owner id, security specifier, flags (RO, hidden, sys)

data attribute

Attribute list

11/29/24 Mengwei Xu @ BUPT 72

NTFS Medium File

Std. Info. File Name Data (nonresident) (free)

MFT Record

Master File Table

D
at

a
Ex

te
n

t
D

at
a

Ex
te

n
t

Start

Length +

Start + Length

+
Start

Length

Start + Length

11/29/24 Mengwei Xu @ BUPT 73

NTFS Large/Fragmented File

11/29/24 Mengwei Xu @ BUPT 74

NTFS Multiple Indirect Blocks

Even the attribute list
becomes nonresident!

Why it is possible??

11/29/24 Mengwei Xu @ BUPT 75

• File system metadata is stored in files with well-known low-numbered
file numbers
- File number 0 ($MFT) is the MFT itself
- File number 5 is the root directory
- File number 6 is the free space bitmap
- File number 8 contains a list of the volume’s bad blocks
- File number 9, called $Secure, contains security and access control information.

• If MFT is stored as a file, how do we read it..?
- To locate the MFT, the first sector of an NTFS volume includes a pointer to the

first entry (why?) of the MFT.

NTFS Details

11/29/24 Mengwei Xu @ BUPT 76

• Best fit: where the system tries to place a newly allocated file in the
smallest free region that is large enough to hold it.
- In most implementations

• An important NTFS feature: SetEndOfFile() to specify the expected size
of a file at creation time.
- Why it is useful?

• To avoid having $MFT become fragmented, NTFS often reserves part of
the disk (e.g., the first 12.5% of the volume) for MFT expansion
- Why we didn’t care about fragmentation in FFS? (doesn’t mean there’s no

fragmentation in FFS! For example, still internal fragmentation)
- Recall: segmenting vs. paging

NTFS Locality Heuristics

11/29/24 Mengwei Xu @ BUPT 77

• Traditional I/O involves explicit transfers between buffers in process
address space to/from regions of a file
- This involves multiple copies into caches in memory, plus system calls

• What if we could “map” the file directly into an empty region of our
address space
- Implicitly “page it in” when we read it
- Write it and “eventually” page it out

• Executable files are treated this way when we exec the process!!

Memory Mapped Files

11/29/24 Mengwei Xu @ BUPT 78

Recall: Who Does What, When?

virtual address

MMU PT
instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry frame#

offset

11/29/24 Mengwei Xu @ BUPT 79

Using Paging to mmap() Files
virtual address

MMU PTinstruction

physical address

page#
frame#

offset
page fault

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

exception

Page Fault Handler

scheduler

retry

Read File
contents

from memory!

11/29/24 Mengwei Xu @ BUPT 80

mmap() system call

• May map a specific region or let the system find one for you
• Tricky to know where the holes are

• Used both for manipulating files and for sharing between processes

11/29/24 Mengwei Xu @ BUPT 81

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */

int something = 162;

int main (int argc, char *argv[]) {
 int myfd;
 char *mfile;

 printf("Data at: %16lx\n", (long unsigned int) &something);
 printf("Heap at : %16lx\n", (long unsigned int) malloc(1));
 printf("Stack at: %16lx\n", (long unsigned int) &mfile);

 /* Open the file */
 myfd = open(argv[1], O_RDWR | O_CREAT);
 if (myfd < 0) { perror("open failed!");exit(1); }

 /* map the file */
 mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);
 if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

 printf("mmap at : %16lx\n", (long unsigned int) mfile);

 puts(mfile);
 strcpy(mfile+20,"Let's write over it");
 close(myfd);
 return 0;
}

$./mmap test
Data at: 105d63058
Heap at : 7f8a33c04b70
Stack at: 7fff59e9db10
mmap at : 105d97000
This is line one
This is line two
This is line three
This is line four

$ cat test
This is line one
ThiLet's write over its line three
This is line four

11/29/24 Mengwei Xu @ BUPT 82

• Copy-on-write (COW) file system: when updating an existing file, it
does not overwrite the existing data or metadata; instead, it writes new
versions to new locations
- Turning random I/O updates to sequential ones.

Other File Systems..

Read textbook for more information!

11/29/24 Mengwei Xu @ BUPT 83

• Directories: naming data
- How do we convert a file name to the file number?

• Files: finding data
- How do we locate storage block based on file number?

• Vir tual file systems (VFS)
- How do we make different FSs work together easily?

Goals for Today

file name
offset directory

file number
offset index structure

Storage block

11/29/24 Mengwei Xu @ BUPT 84

• Early OSes provided a single file system
- In general, system was tailored to target hardware

• People became interested in supporting more than one file system type
on a single system
- Any guesses why?
- Networked file systems: sharing parts of a file system across a network of

workstations

History

11/29/24 Mengwei Xu @ BUPT 85

Virtual File System (VFS)

11/29/24 Mengwei Xu @ BUPT 86

Virtual File System (VFS)

11/29/24 Mengwei Xu @ BUPT 87

• Dozens of supported file systems
- Allows new features and designs transparent to apps
- Interoperability with removable media and other OSes

• Independent layer from backing storage
- In-memory file systems (ramdisks)
- Pseudo file systems used for configuration

q (/proc, /devtmps…) only backed by kernel data structures

• And, of course, networked file system support

Modern VFS

11/29/24 Mengwei Xu @ BUPT 88

• The VFS is a substantial piece of code
- not just an API wrapper

• Caches file system metadata (e.g., names, attributes)
- Coordinates data caching with the page cache

• Enforces a common access control model
• Implements complex, common routines

- Path lookup
- Opening files
- File handle management

What the VFS Does

11/29/24 Mengwei Xu @ BUPT 89

• Single programming interface
- (POSIX file system calls – open, read, write, etc.)

• Single file system tree
- Remote FS can be transparently mounted (e.g., at /home)

• Alternative: Custom library for each file system
- Much more trouble for the programmer

User’s Perspective

11/29/24 Mengwei Xu @ BUPT 90

• FS developer responsible for implementing standard objects/functions
called by the VFS
- Primarily populating in-memory objects

qTypically from stable storage
- Sometimes writing them back

• Can use block device interfaces to schedule disk I/O
- And page cache functions
- And some VFS helpers

• Analogous to implementing Java abstract classes

FS Developer’s Perspective

11/29/24 Mengwei Xu @ BUPT 91

• Translate between VFS objects and backing storage (whether device,
remote system, or other/none)
- Potentially includes requesting I/O

• Read and write file pages

• VFS doesn’t prescribe all aspects of FS design
- More of a lowest common denominator

• Opportunities: (to name a few)
- More optimal media usage/scheduling
- Varying on-disk consistency guarantees
- Features (e.g., encryption, virus scanning, snapshotting)

High-level FS dev. tasks

11/29/24 Mengwei Xu @ BUPT 92

• super block: FS-global data
- Early/many file systems put this as first block of partition

• inode: (index node): metadata for one file
• dentry: (directory entry): name to inode mapping
• file object: pointer to dentry and cursor (file offset)

• SB and inodes are extended by file system developer

Core VFS Abstractions

11/29/24 Mengwei Xu @ BUPT 93

Core VFS Abstractions

11/29/24 Mengwei Xu @ BUPT 94

Core VFS Abstractions

11/29/24 Mengwei Xu @ BUPT 95

Core VFS Abstractions

11/29/24 Mengwei Xu @ BUPT 96

VFS Global Organization

11/29/24 Mengwei Xu @ BUPT 97

• Many FSes embed VFS inode in FS-specific inode
 struct myfs_inode {

 int ondisk_blocks[];

 /* other stuff*/

 struct inode vfs_inode;

 }

• Why? Finding the low-level from inode is simple
- Compiler translates references to simple math

Embedded Inodes

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa14/cse506.2/slides/vfs.pdf

11/29/24 Mengwei Xu @ BUPT 98

• File System:
- Transforms blocks into Files and Directories
- Optimize for size, access and usage patterns
- Maximize sequential access, allow efficient random access
- Projects the OS protection and security regime (UGO vs ACL)

• File defined by header, called “inode”
• Naming: translating from user-visible names to actual sys resources

- Directories used for naming for local file systems
- Linked or tree structure stored in files

• Multilevel Indexed Scheme
- inode contains file info, direct pointers to blocks, indirect blocks, doubly indirect,

etc..
- NTFS: variable extents not fixed blocks, tiny files data is in header

File System Summary (1/2)

11/29/24 Mengwei Xu @ BUPT 99

• 4.2 BSD Multilevel index files
- Inode contains ptrs to actual blocks, indirect blocks, double indirect blocks, etc.
- Optimizations for sequential access: start new files in open ranges of free blocks,

rotational optimization

• File layout driven by freespace management
- Integrate freespace, inode table, file blocks and dirs into block group

• Deep interactions between mem management, file system, sharing
- mmap(): map file or anonymous segment to memory

File System Summary (2/2)

