Operating Systems
Lecture |4

fs design

Prof. Mengwel Xu

11/29/24

1/0 & Storage Layers

Application / Service

High Level I/O

Low Level I/O
Syscall

File System

Operations, Entities and Interface

streams

handles

registers
file _open, file_read, .. on struct file * & void *

<

I/O Driver

descriptors we are he re ...

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Mengwei Xu @ BUPT

Layered abstractions of 1/0 and storage

Application

—————— stdio: fopen(), fclose(), fread(), fwrite()

Library

—————— syscall: open(), close(), read(), write()
How files and directories are organized in

memory and disk
—————— Data block ops between storage and memory

Caching blocks in memory; write buffering,
synchronization

File System

Block Cache

Block device interface: a standard interface for different I/O
devices to R/WV in fixed-sized blocks (e.g., 512 bytes).

Device Driver Translate 1/0 abstractionsinto device-specific I/O operations

Memory-mapped 1/0: maps each device’s control registers to a range of physical addresses on the

MemorY'MaPPed l/ O’ memory bus. For example, the OS knows last key pressed by keyboard in a physical address.
DMA, Interru pts Direct Memory Access: copy a block of data between storage and memory.

Interrupts are needed so OS knows when 1/O device completes its request (otherwise use polling).

Physical Devices

11/29/24 Mengwei Xu @ BUPT 3

Recall: C Low level 1/0

* File Descriptors —as OS object representing the state of a file
- User has a "handle” on the descriptor

##include <fcntl.h>
##include <unistd.h>
#include <sys/types.h>

int open (const char *filename, i flags [, /mode t mode])
int create (const char *filename, mode_t moii;//g

int close (int filedes

Bit vector of:

* Access modes (Rd,Wr,...)

* Open Flags (Create,...)

* Operating modes (Appends, ...)

Bit vector of Permission Bits:
* User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html _node/Opening-and-Closing-Files.html

11/29/24 Mengwei Xu @ BUPT 4

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

Recall: C Low level 1/0

* File Descriptors —as OS object representing the state of a file
- User has a "handle” on the descriptor

ssize t read (int filedes, void *buffer, size t maxsize)
- returns bytes read, © => EOF, -1 => error
ssize t write (int filedes, const void *buffer, size t size)
- returns bytes written
off t lseek (int filedes, off_t offset, int whence)
- set the file offset
* if whence == SEEK SET: set file offset to “offset”
* if whence == SEEK _CRT: set file offset to crt location + “offset”
* if whence == SEEK END: set file offset to file size + “offset”
int fsync (int fildes)
- wait for i/o of filedes to finish and commit to disk
void sync (void) - wait for ALL to finish and commit to disk

* When write returns, data is on its way to disk and can be read,
but it may not actually be permanent!

Building a File System

* File System: Layer of OS that transforms block interface of disks (or
other block devices) into Files, Directories, etc.

* File System Components
- Naming: Interface to find files by name, not by blocks
- Disk Management: collecting disk blocks into files
- Protection: Layers to keep data secure

- Reliability/Durability: Keeping of files durable despite crashes, media failures,
attacks, etc.

11/29/24 Mengwei Xu @ BUPT 6

User vs. System View of a File

e User's view:
- Durable Data Structures

* System’s view (system call interface):
- Collection of Bytes (UNIX)

- Doesn’'t matter to system what kind of data structures you want to store
on disk!
* System’s view (inside OS):
- Collection of blocks (a block is a logical transfer unit, while a sector is the
physical transfer unit)
- Block size > sector size; in UNIX, block size i1s 4KB

11/29/24 Mengwei Xu @ BUPT 7

Translating from User to System View

* What happens it user says: give me bytes 2—12!
- Fetch block corresponding to those bytes
- Return just the correct portion of the block

* What about: write bytes 2—| 2!
- Fetch block
- Modify portion
- Write out Block
* Everything inside File System is In whole size blocks

- For example, getc (), putc() = buffers something like 4096 bytes, even if
interface Is one byte at a time

* From now on, file is a collection of blocks

11/29/24

Disk Management Policies (1/2)

* Basic entities on a disk:
- File: user-visible group of blocks arranged sequentially in logical space
- Directory: user-visible index mapping names to files

* Access disk as linear array of sectors. Two Options:

- |dentify sectors as vectors [cylinder, surface, sector], sort in cylinder-major order
 Used in BIOS, but not in OSes anymore

- Logical Block Addressing (LBA, 1Z 48RS 11): Every sector has integer address
from zero up to max number of sectors
- Controller translates from address = physical position
First case: OS/BIOS must deal with bad sectors
(dSecond case: hardware shields OS from structure of disk

Mengwei Xu @ BUPT

Disk Management Policies (2/2)

* Need way to track free disk blocks

- Link free blocks together = too slow today
- Use bitmap to represent free space on disk

* Need way to structure files; File Header
- Track which blocks belong at which offsets within the logical file structure
- Optimize placement of files’ disk blocks to match access and usage patterns

11/29/24 Mengwei Xu @ BUPT 10

File

* Named permanent storage Data blocks
* Contains
- Data .
JBlocks on disk somewhere File handle
- Metadata (Attributes)
L Owner; size, last opened, ... File descriptor
QAccess rights Fileobject (inode)
« RW X Position

* Owner, Group, Other (in Unix systems)
* Access control list in Windows system

11/29/24 Mengwei Xu @ BUPT I

Directory

* Basically a hierarchical structure

* Each directory entry is a collection of
- Files
- Directories
A link to another entries

* Fach has a name and attributes
- Files have data

* Links (hard links) make it a DAG, not just a tree
- Softlinks (aliases) are another name for an entry

11/29/24 Mengwei Xu @ BUPT 12

Directory

* Conventions of directory
* Root directory (£ H 3%):"/"
* Home directory (F H 3¢):""~/cur_dir/file txt”
 Absolute path (48X} #&4%):"/home/mwx/cur_dir/file txt”
* Relative path (FHXJ &1L “file.txt”

* Volume () a collection of physical storage resources that form a
logical storage device. Could be a part of or many physical devices.

* Mount (#£%%): an operation that creates a mapping from some path in
the existing file system to the root directory of the mounted volume’s
file system

mount —t type device

11/29/24 Mengwei Xu @ BUPT 13

Directory

mwx@Dragon2|:~$ findmnt -t ext4
TARGET SOURCE FSTYPE
/ /dev/sdab ext4

|-—/ data? /dev/sdc ext4
—/data /dev/sdbl ext4
F—/var/lib/snapd /dev/sdc[/zl/snap/snapd] ext4
L—/boot /dev/sdal ext4

OPTIONS
rw,relatime,errors=remount-ro
rw,relatime

rw,relatime

rw,relatime

rw,relatime

Designing a File System ...

* What factors are critical to the design choices!
* Durable data store => it's all on disk

* (Hard) Disks Performance !l
- Maximize sequential access, minimize seeks

* Open before Read/Write

- Can perform protection checks and look up where the actual file resource are, in
advance

* Size Is determined as they are used !!
- Can write (or read zeros) to expand the file
- Start small and grow, need to make room

* Organized into directories
- What data structure (on disk) for that!

 Need to allocate / free blocks
- Such that access remains efficient

11/29/24 Mengwei Xu @ BUPT I5

Components of a file system

file name file number Storage block
offset directory offset index structure

* Open performs Name Resolution
- Translates pathname into a “file number”
1 Used as an “index’” to locate the blocks
- Creates a file descriptor in PCB within kernel
- Returns a “handle” (another integer) to user process

* Read, Wirite, Seek, and Sync operate on handle
- Mapped to file descriptor and to blocks

11/29/24 Mengwei Xu @ BUPT 16

inode

* An inode Is a data structure on a filesystem on Linux and other Unix-
ike operating systems that stores all the information about a file except

its name and its actual data.

B

Inode table

/home/joe/wikidb

- File type File descriptors :
- Permissions 0 File table
- Owner ID 1 read
- Group ID
- Size of file 2 write
- Time last accessed 3 .
| | g read-write
- Time last modified 4
- Soft/Hard Links

Y v

- Access Control List (ACLs)

11/29/24 Mengwei Xu @ BUPT

/etc/passwd

inode

* An inode Is a data structure on a filesystem on Linux and other Unix-
ike operating systems that stores all the information about a file except
its name and Iits actual data.

- File type Sls o1
- Permissions 2698698 awards.html 2698800 materials
2698699 css-js 2698803 old-materials

- Owner [D 2698708 files 3988068 papers.html
- (SFKDUF)|[) 2698786 full-conference.json 2698809 projects

, 2698787 full-journal. json 2698817 selected-conference. json
- Size of file 2698788 full-pub.html 2698818 selected-journal . json
- Time last accessed 2698789 image 2698819 service.html

. . 2698797 index-shenzhen.html 2698820 students.html
- Time last modified 2698798 index.html 2698821 teaching.html
- Soft/Hard Links 2698799 1invited-talks.html

- Access Control List (ACLs)

11/29/24 Mengwei Xu @ BUPT 18

inode

* An inode Is a data structure on a filesystem on Linux and other Unix-
ike operating systems that stores all the information about a file except
its name and Iits actual data.

* Fach file has exactly one corresponding one inode!? (i.e., |- mapping)
- True for most traditional Unix-like filesystems
- No true with hard links (covered later)

* When a file is copied — a new inode

* When a file is moved — nothing changed
- Unless to another filesystem

11/29/24 Mengwei Xu @ BUPT 19

How Many inodes in Linux

* For 32-bit iInode number; it's 27 32 (about 4 billions)

- Max

* [t's also configurable in many file systems

 Qut of inode error.,

echo:homepage
Filesystem
/dev/disklsl
devfs

/dev/diskls2
/dev/disklsh
map auto_home

echo$ df -1

512-blocks Used Available Capacity iused

1953595632 21968928 991671656
387 387 0
1953595632 934163472 991671656
1953595632 4194344 991671656
0 0 0

3%
100%
49%
1%

100%

ifree %iused

488378 9767489782 0%

678

0 100%

4233888 9763744272 0%
2 9767978158 0%

0

0 100%

In-Memory File System Structures

directory structure

open (file name) .
directory structure

file-control block

user space kernel memory secondary storage

* open system call:
- Resolves file name, finds file control block (inode)

- Makes entries In per-process and system-wide tables
- Returns index (called "file handle™) in open-file table

11/29/24 Mengwei Xu @ BUPT 21

In-Memory File System Structures

index
ed
/
/ data blocks
—
read (index)]
per-process system-wide file-control block
open-file table open-file table

user space kernel memory secondary storage

* read/write system calls:

- Use file handle to locate inode
- Perform appropriate reads or writes

11/29/24 Mengwei Xu @ BUPT 22

Typical File Systems

* FAT (Microsoft File Allocation Table), 19/0s.

- Extremely simple index structure: a linked list.
- Still widely used in devices like flash memory sticks and digital cameras

* FFS (Unix Fast File System), 1980s.

- Tree-based multilevel index to improve random access efficiency.

- Uses a collection of locality heuristics to get good spatial localty.
- EXT2 and EXT3 are based on FFS.

* NTFS (Microsoft New Technology File System): 1990s.

- More flexible tree structure.
- Mainstream file system on MS.

- It's representative to EXT4, XFS, and Apple’s Hierarchical File Systems (HFS and
HFS+).

11/29/24 Mengwei Xu @ BUPT 23

Goals for Today

* Directories: naming data
- How do we convert a file name to the file number?

* Files: finding data
- How do we locate storage block based on file number?

* Virtual file systems (VFS)

- How do we make different FSs work together easily?

file name file number Storage block
offset directory offset index structure

11/29/24 Mengwei Xu @ BUPT 24

Goals for Today

* Directories: naming data
- How do we convert a file name to the file number?

* Files: finding data
- How do we locate storage block based on file number?

* Virtual file systems (VFS)

- How do we make different FSs work together easily?

offset directory offset lindex structure

|
 file name file number | Storage block
|

| |

|

11/29/24 Mengwei Xu @ BUPT 25

Directory Structure

* Directory is treated as a file with a list of <file name: file number>
mappings
* The file number of the root directory is agreed ahead of time
- In many Unix FSs, it's 2.

P S
File2 | bin 737
“I” | usr 924
home158 :
~->File 158 | mike 682
“/home” | ada 818
tom 830
[S,
~->File 830 | music 320
“/home/tom” | work 219
foo.txt 871
------- File 871 | 1he quibe
“/home/tom/foo.txt” | brown fox
Jjumped
over the
lazy dog.

11/29/24 Mengwei Xu @ BUPT 26

Directory Operations

* Stored In files, can be read, but typically don't
- System calls to access directories /usr
- open / creat traverse the structure
- mkdir /rmdir add/remove entries
- link / unlink (rm)

sr/1ib -
O Link existing file to a directory fusr/1i /usr/11b4.3
* Not in FAT !
dForms a DAG
* When can file be deleted?
- Maintain ref-count of links to the file ,
jusr/1lib/foo

- Delete after the last reference is gone

* libc support /usr/1ib4.3/foo

- DIR * opendir (const char *dirname)
- struct dirent * readdir (DIR *dirstream)

- int readdir_r (DIR *dirstream, struct dirent *entry,
struct dirent **result)

11/29/24 Mengwei Xu @ BUPT 27

Directory Internals

* Farly implementations simply stored linear lists of <file name, file
number> in directory files.

- Free spaces are for new entries. Note: files can be added/deleted.

File 830
“/home/tom”
Name . . music | work foo.txt m
File Number| 830 158 320 219 |Free Space| 871 Free Space 3
Next : : : : : >

...

...

* Works fine iIn most cases. But when there are thousands of files in a
directory.. The access could be slow!

11/29/24 Mengwei Xu @ BUPT

28

Directory Internals

Search for Hash (foo.txt) = 0x30

* Modern FSs (Linux XFS, Microsoft oo
NTFS, and Oracle ZFS) organize o T
directory’'s contents as a tree.

- B/B+ tree: fast lookup, insert, and s I 121 | 160 | 24 a0 Toat | s50 [
removal B e a T e e

- Names are first hashed into a key, Loat Cit L[e
which is used to find the file U S = S S F o
number in the tree : : e ———

Hash Number

Name . . foo.txt | music work | code bin test
File Number | 830 158 871 320 219 3 014 324

Logical View

File Containing Directory

File Number 320 219 % } % i { % { % } { } I

Name music | work Root | Child | Leaf Leaf | Child
T
[T1

Directory Entries B+Tree Nodes

Physical View

11/29/24 Mengwei Xu @ BUPT 29

Directory Structure Access Cost

* How many disk accesses to resolve “/my/book/count™
- Read in file header for root (fixed spot on disk)

Read in first data block for root
dTable of file name/index pairs. Search linearly — ok since directories typically very small

Read in file header for “my”

Read in first data block for “my"; search for “book™
Read in file header for “book”

Read in first data block for “book’: search for"‘count”
Read in file header for “count”

* Current working directory: Per-address-space pointer to a directory (inode)
used for resolving file names

- Allows user to specify relative filename instead of absolute path (say CWD="/my/book”
can resolve “count”)

11/29/24 Mengwei Xu @ BUPT 30

Hard Link

* In command — link()

- It creates another name In the directory you are creating the link to, and refers it
to the same inode number of the original file.

echo hello > file

cat file
hello

In file file2

cat file2
hello

s -i file file2
67158084 file
67158084 file2

rm file
removed ‘file’

cat file2
hello

11/29/24 Mengwei Xu @ BUPT 31

Hard Link

* In command — link()

- It creates another name In the directory you are creating the link to, and refers it
to the same inode number of the original file. echo hello > file

- OS maintains a reference count for each inode. stat file

... Inode: 67158084 Links: | ...
In file file2
stat file

... Inode: 67158084 Links: 2 ...
stat file2

... Inode: 67158084 Links: 2 ...
In file2 file3
stat file

... Inode: 67158084 Links: 3 ...
rm file
stat file2

.. Inode: 67158084 Links: 2 ...

11/29/24 Mengwei Xu @ BUPT) 32

11/29/24

Soft Link

* In -s command — soft (or symbolic) link()

- A special type of file (as against regular file/dir) whose contents are the

pathname of the linked-to file.

echo hello > file
In -s file file2
cat file2

hello

s -al
drwxr-x--- 2 remzi remzi 29
drwxr-x--- 27 remzi remzi 4096
-rW-r----- I remzi remzi 6
lrwXrwXxrwx I remzi remzi 4

May 3 19:10
May 3 15:14
May 3 19:10
May 3 19:10

A

.

file

file2 -> file

Mengwei Xu @ BUPT

33

Soft Link

* In -s command — soft (or symbolic) link()

- A special type of file (as against regular file/dir) whose contents are the he
pathname of the linked-to file.

echo hello > alongerfilename

In -s alongerfilename file3

s -al alongerfilename file3
-rwW-r----- | remzi remzi 6 May 3 19:17 alongerfilename
Irwxrwxrwx | remzi remzi |5 May 3 19:17 file3 -> alongerfilename

11/29/24 Mengwei Xu @ BUPT 34

Soft Link

* In -s command — soft (or symbolic) link()

- A special type of file (as against regular file/dir) whose contents are the he
pathname of the linked-to file.

- Dangling reference

echo hello > file

In -s file file2
cat file2
hello

rm file
cat file2
cat: file2: No such file or directory

11/29/24 Mengwei Xu @ BUPT 35

11/29/24

Hard Link vs. Soft Link (Symlink)

Hard Link There will be link count

Hard Link is direct pointer to the original inode
of the original file. If you compare the original
file with hard link, there won't be any differences.

e s

Visible to User
Original [Soft Link
File

\ Created
\

Internally

_/

Inode

Inode

Original File
Inode - 312422

v

Data on Hard Disk

d i

Soft Link / Symlink

A softlink is a file that have the information to
point to another file/inode. That inode points to
the data on the hard drive.

_ >

Visible to User
Original [Soft Link
File \ Created
\
Inode W Internally Inode¢'

Soft Link
Inode - 312342

Original File
Inode - 312422 e

'\

/

\ Data on Hard Disk

Mengwei Xu @ BUPT

36

Hard Link vs. Soft Link (Symlink)

 WWhen shall | use hard link

- | dont want to increase inode number,

- | want the linked file/directory keep working even when the original
file/directory Is deleted.

- Version control.

* When shall | use soft link
- | want to link to a directory.
dUsing hard link to directory might result in cycle in the directory tree.
- | want to link to files in other disk partitions.

Because inode numbers are only unique within a particular file system,
not across file systems.

- Shortcuts.

11/29/24 Mengwei Xu @ BUPT 37

Goals for Today

* Directories: naming data
- How do we convert a file name to the file number?

* Files: finding data
- How do we locate storage block based on file number?

* Virtual file systems (VFS)

- How do we make different FSs work together easily?

|
|
file name | file number Storage block |
|
|
|

. | .
offset directory | offset index structure

11/29/24 Mengwei Xu @ BUPT 38

FAT (File Allocation Table)

* FAT is a linked list as |-1 map with blocks FAT Disk Blocks
- Represented as a list of 32-bit entries ¢\ umber 9 0:
- Older versions use fewer bits \
= - - - 3 ":l File 31, Block 0
* Fach entry in FAT contains a pointer to

File 31, Block |

the next FAT entry of the same file
- Or a special END_OF_FILE value.

- The file number is the [t (or root) index of
the block list for the file

e For File No. #, its

| st data block index: |
2"d data block index: *(FATT]) - File 31, Block 2
3 data block index: *(*(FATTi]))

N-1: N-1:

11/29/24 Mengwei Xu @ BUPT 39

11/29/24

FAT (File Allocation Table)

* FAT is a linked list as |-1 map with blocks

- Represented as a list of 32-bit entries file number

* Where Is FAT stored?

- On Disk, on boot cache in memory,
second (backup) copy on disk

* Free space: FAT free list, 1.e.,, FAT[1] = 0.
* To find a free block: scanning through FALT.

Mengwei Xu @ BUPT

N

N-1:

FAT

0:

N-1:

Disk Blocks

File 31, Block 0

File 31, Block |

File 31, Block 2

40

FAT (File Allocation Table)

* FAT is a linked list as -1 map with blocks FAT Disk Blocks
- Represented as a list of 32-bit entries 0: 0:

file number

* Locality (storing a file in sequential blocks) is \ 31+
important for fast /O '
- Sequential I/O i1s much faster than random 1/O

- Imagine you want to append 00MB to a 200MB file.. FS
cannot guarantee they are stored sequential

:l File 31, Block 0
File 31, Block |

* How to ensure good locality heuristics in FAT?

- Simple strategy: next [it, 1.e., scans sequentially through the
FAT starting from the last entry that was allocated and
return the next free entry

- File 31, Block 2

- Still, there will be increasing fragment

- Defragmentation tool: read files and rewrite them to newh-1:
locations with better locality

N-1:

11/29/24 Mengwei Xu @ BUPT 41

FAT (File Allocation Table)

* FAT 1s a linked list as -1 map with blocks FAT Disk Blocks
- Represented as a list of 32-bit entries . 0: 0:
file number

* Locality (storing a file in sequential blocks) is \
important for fast I/O 31:

- Sequential I/O i1s much faster than random /O >
lmrrAa~inA At vaant A anmitA TNNMD +A ~ ONNMD filA EC

File 31, Block 0
File 31, Block |

_ Je

filefrag -v /var/log/messages.l
Filesystem type is: ef53
® File size of /var/log/messages.l is 41733 (11 blocks, blocksize 4096)
ext logical physical expected length flags
0 0 2130567 1
1 1 15907576 2130568
2 2 15910400 15907577
3 3 15902720 15910401
4 10 2838546 15902727
/var/log/messages.1l: 5 extents found

- B I - - = =y

File 31, Block 2

=

IN=1. IN=1.

11/29/24 Mengwei Xu @ BUPT 42

FAT (File Allocation Table)

* FAT is a linked list as |-1 map with blocks FAT Disk Blocks
- Represented as a list of 32-bit entries 0: 0:

file number

\ 31 ":l File 31, Block 0

* READ: just get block by block with FAT File 31, Block |
* WRITE

- Get blocks from free list
- Linking them into a file

* Format a disk
- Zero the blocks, link up the FAT free list

e Quick format
- Link up the FAT free-list

- File 31, Block 2

N-1: N-1:

11/29/24 Mengwei Xu @ BUPT 43

FAT Issues

* Poor locality: there will be fragmentations

* Poor random access: needs to traverse the file's FAT entries till the block
IS reached

* File metadata stored in directory entries, therefore being limited
- Only has file's name, size, and creation time, but cannot specify the file's owner
or group.
* Limitations on volume and file size
- With top 4 bits reserved.
- 2728 blocks * 4KB block size = | TB.
- Larger block size (up to 256KB)?
- File size 1s encoded in 32 bits, so less than 4GB.

11/29/24 Mengwei Xu @ BUPT 44

FAT Issues

* No support for hard links: hard to maintain a link count.
- FAT does not use inode.

FAT Other Filesystems

/home/foo l ffile| /home/foo2/file2 /home/foo l ffilel /home/foo2/file2

1

CITR B! G 2

11/29/24 Mengwei Xu @ BUPT 45

Unix File System (1/2)

* Original inode format appeared in BSD 4.1
- Berkeley Standard Distribution Unix
- Similar structure for Linux Ext2/3

* File Number is index into inode arrays

* Multi-level index structure
- Great for little and large files
- Asymmetric tree with fixed sized blocks

11/29/24 Mengwei Xu @ BUPT 46

Unix File System (2/2)

* Metadata associated with the file
- Rather than in the directory that points to It

* UNIX Fast File System (FFS) BSD 4.2 Locality Heuristics:

- Block group placement
- Reserve space

* Scalable directory structure

11/29/24 Mengwei Xu @ BUPT 47

File Attributes

* Multi-level index
- Fixed, asymmetric tree

Inode Array

Inode

File Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer

Indirect Pointer

Dbl. Indirect Ptr.

“[Tripl. Indirect Ptr.

Mengwei Xu @ BUPT

Triple
Indirect
Blocks

Double
Indirect
Blocks

Indirect
Blocks

Data
Blocks

v

v

v

v

48

File Attributes

Inode Array Triple Double

Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
ol ,

File Metadata

| I
Dllﬁt mter_ ... >
K DP seeeasened f >
DP
User_‘. gg ; g.......n.....-..)D::::::::g
Group o5 P reeressaneesnnaae >

o o DP
9 basic access control bits o

- UGO x RWX o ks

X oP FR :
Setuid bit 0P TR o TR
)) Direct Pointer [eeeeeeeeni PE 'D >
- execute at owner permissions Indirect Pointer [--ssseeesseeeesd S T N D,D >
B Dbl. Indirect Ptr. [---eeoeerrrmmmmnnnnnnnndt """" e :

rather than user Tripl. Indirect Ptr. |---eeeeeeees >D::::::::§ e iensaenaans ,I:l N >
Setgid bit S I
- execute at group’s permissions rrvreeeesseessns o —

v

11/29/24 Mengwei Xu @ BUPT 49

File Attributes

echo:homepage echo$
total 176
drwxr-xr-x@ 11 echo
drwxr-xr-=x@ 10 echo
—-rw—r—r—@ 1 echo
drwxr-xr-x@ 12 echo
S rw—r—r—@ 1 echo

Grou 48 echo
- UG echo

echo
echo

d rwxr—xr—x@

Set:gidqrwxr—xr—x@

- execute at group’s permissions

8
1
1 echo
4
6

N
NDNONUINDNNN

.DS_Store

.git
awards.html
files

image
index.html
index.old.html
materials
_projects

e []

File Attributes

Inode Array Triple Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
.. ,[:]
o Matadaty || ’D
| T N E]
DP et R >
— DP 'I D
I DP II Seessescsasessssseed > D
0o f
4kB blocks = | & I = = -
sufficient for files up to 48KB R s TN I :
0P '
I 9' ! Pointe ll_ : Banssansassansssans .D ,D
Indirect Pointer f--«ewseerseensees? : 3l Toeeerreeereeeieieieen] Jeveorreeseeeereseecened
Dbl. Indirect Ptr. D """" D """" D
‘ Tl'lp| Indirect Ptr, |----eeeeeeeeeees ,D:::::::é S 9D S .)D
L]

=

11/29/24 Mengwei Xu @ BUPT 51

File Attributes

Indirect pointers
- point to a disk block
containing only pointers

4 kB blocks => 1024 ptrs

Indirect Pointer (—ZR|BJ}%Z:5|)
=>4 MB

Double Indirect Pointer (—%%..)
=>4 GB

Triple Indirect Pointer (=%K..)
=>4TB

11/29/24

Inode Array

Inode

File Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer
Indirect Pointer

Dbl. Indirect Ptr.

“=| Tripl. Indirect Ptr.

Mengwei Xu @ BUPT

Triple Double
Indirect Indirect
Blocks Blocks

Indirect Data
Blocks Blocks

52

FFS Characteristics

* Tree structure. tach file is represented as a tree, which allows the
file system to efficiently find any block of a file.

* High degree. The FFS tree uses internal nodes with many children.

- A 4KB file block contains 1024x blocklD in 4 bytes.
- Improves sequential reads and writes. Why!

* Fixed structure. The FFS tree has a fixed structure.

- For a given configuration of FFS, the first set of d pointers always point to the
first d blocks of a file; etc.

- Make implementation easier.

* Asymmetric. FFS's tree structure is asymmetric, I.e., different depthes.
- Small files can be stored with low cost (size and access speed).
- While we still support very large files.

Asymmetric vs. Symmetric

* In a symmetric tree with each entry to be triple indirect pointers

— lo store a 4B file, how much space we need?

11/29/24 Mengwei Xu @ BUPT 54

Asymmetric vs. Symmetric

* In a symmetric tree with each entry to be triple indirect pointers

— lo store a 4B file, how much space we need?
- 4B data + small inode + 3x 4KB indirect blocks
- How about our asymmetric tree!

11/29/24 Mengwei Xu @ BUPT 55

11/29/24

Asymmetric vs. Symmetric

* In a symmetric tree with eac

— To store a 4B file, how muc
- 4B data + small inode + 3x 4
- How about our asymmetric t

Inode Array

Inode

File Metadata

Direct Pointer

DP

DP

Direct Pointer

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

A file with 4 blocks, each
block accessed directly

Sparse Files

* FFS can support sparse files, in which one or more ranges of empty
space are surrounded by file data.

- Those empty space shall not consume disk space.

Inode

File Metadata

Direct Pointer

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

Dbl. Indirect Ptr.

NIL

11/29/24

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks
.. ,D
... D,D,D

Mengwei Xu @ BUPT

<= A sparse file with 4KB data at
offset 0, and 4KB data at offset 239,

Command Is shows it takes |.l1GB.
Command du shows it takes | 6KB.

57

Free Space Management

* FFS allocates a bitmap with one bit per storage block. The I-th bit in the
bitmap indicates whether the I-th block is free or in use.

* The position of FFS's bitmap is fixed when the file system Is formatted.

- So it Is easy to find the part of the bitmap that identifies free blocks near any
location of interest.

11/29/24 Mengwei Xu @ BUPT 58

Where are inodes Stored?

* In early UNIX and DOS/Windows' FAT file system, headers stored In
special array in outermost cylinders

* Header not stored anywhere near the data blocks
- To read a small file, seek to get header, seek back to data

* Fixed size, set when disk Is formatted
- At formatting time, a fixed number of inodes are created
- Each is given a unigue number, called an “inumber”

11/29/24 Mengwei Xu @ BUPT 59

Where are inodes Stored?

e | ater versions of UNIX moved the header information to be
closer to the data blocks

- Often, inode for file stored in same “cylinder group” as parent directory of the
file (makes an 1s of that directory run fast)

* Pros:
UNIX BSD 4.2 puts bits of file header array on many cylinders

For small directories, can fit all data, file headers, etc. in same cylinder = no
seeks!

File headers much smaller than whole block (a few hundred bytes), so multiple
headers fetched from disk at same time

Reliability: whatever happens to the disk, you can still find many of the files (even
i directories disconnected)

* Part of the Fast File System (FFS)

- General optimization to avoid seeks

Locality Heuristics

* Block group placement: 5 places data to optimize for the
common case where a file's data blocks, a file's data and metadata, and
different files from the same directory are accessed together.

* Reserved space: 5 reserves some fraction of the disk’s space (e.g,
|0%) and presents a slightly reduced disk size to applications.
- When disk is full, there’s little opportunity for file system to optimize localrty.
- Sacrifices a little disk capacity for better locality thus reduced seek times.

Block Group Placement

* File system volume is divided into a set of
block groups

Block Group 0

Block Group 1
- Small seek time

* Data blocks, metadata, and free space
are distributed to different block

- Avoid huge seeks between
user data and system structure

11/29/24 Mengwei Xu @ BUPT 62

Block Group Placement

* Files in the same directory are placed
in the same block group

- The same for the “directory file" as well

Block Group 0

Block Group 1

- l.e, when a new file is created, find an inode
number within the block where its directory
resides and give it to the file.

L Unless there's no free inode number in that block

Block Group 2

* But don't put the directory and its sub-
directory together

- Though they might have locality, it will easily fill
the block.

11/29/24 Mengwei Xu @ BUPT

63

Block Group Placement

e First-Free allocation of new
file blocks

Block Group 0

Block Group 1

To expand file, first try
successive blocks in britmap, then
choose new range of blocks

Block Group 2

Few little holes at start, big
sequential runs at end of group

Avoids fragmentation

Sequential layout for big files

11/29/24 Mengwei Xu @ BUPT 64

UNIX 4.2 BSD FFS First Fit Block Allocation

In-Use Free
Start of Bl;)c < BJ/C)C <
Block
Group

Start of Write Two Block File
Block H
Group

Start of Write Large File

Block “ \IZW

Group

11/29/24 Mengwei Xu @ BUPT 65

Put All Things Together (FFS)

Inodes Blocks

Example: read the file /foo/bar/baz ot @ e [@ o 20 | Biook 198
|. Read"/" root inode #2's inode, get block #9172

From block #912, get inode #31 for "foo” undorst Block 301

Inode 31 @ File Metadata

From inode #31, get block # |94 (foo) | Gsrws | 1
194 e | hear a Block 310

From block # 194, get inode # /3 for “bar” nd I forg

et. I see a
From inode #7/3, get block #99 | s
g A /ISOd/E 4(; @ File Metadata @ bin 47 : Block 912
' ‘ yy (/l00/bar/baz i P
From block #991, get inode #40 for “baz ato st 98

~N oy A

From inode #40, get 3 data blocks 301

ndirem | | Block 919

- Block 310 ember. |
Inode 73 @ © | File Metadata do and |
B BlOCk 9 | 9 (floo/bar) Block Ptrs. gressssmsss s
ni 80 |l
nite 87

11/29/24 Mengwei Xu @ BUPT 66

Carving Up the Disk

v

Entire disk

A

Partition table
aster Partition 1 Partition 2 Partition 3| Partition 4
boot record
Boot Super Free space | Index : : :
block block | management| nodes Files & directories

Boot block: the initial bootstrap program to load OS

Super block: describes the state of the file system: the total size
of the partition, the block size, pointers to a list of free blocks,
inode number of the root directory, magic number, etc

FFS Summary

* Pros
- Efficient storage for both small and large files
- Locality for both small and large files
- Locality for metadata and data
- No defragmentation necessary!

* Cons
- Inefficient for tiny files (a | byte file requires both an inode and a data block)
- Inefficient encoding when file Is mostly contiguous on disk
- Need to reserve 10-20% of free space to prevent fragmentation

11/29/24 Mengwei Xu @ BUPT 68

NTFS

* New Technology File System (NTFS)

- Default on Microsoft Windows systems

* Variable length extents
- Rather than fixed blocks

* Everything (almost) is a sequence of <attribute (J&t#:):value> pairs
- Meta-data and data

* Mix direct and indirect freely

* Directories organized in B-tree structure by default

11/29/24 Mengwei Xu @ BUPT 69

NTFS

e Master File Table
- Database with flexible KB entries for metadata/data
- Variable-sized attribute records (data or metadata)
- Extend with variable depth tree (non-resident attribute, F &5 &)

* Extents — variable length (
' ' Master File Table
contiguous regions —

- Block pointers cover Log file record
runs of blocks

- Similar approach in
Linux (ext4)

- File create can provide Small Eile xecexd o
hint as to size of file

¢ Journaling for reliability Small directory record Extent 2
- Discussed later -

Extent

Extent 1

Large file recorxd

http://ntfs.com/ntfs-mft.htm
11/29/24 Mengwei Xu @ BUPT 70

NTFS Small File

Master File Table

Create time, modify time, access time,
Owner id, security specifier, flags (RO, hidden, sys)

MFT Bé:ord (small file) data attribute
Std/(nfo. File Name Data (resident/ (free)

f
Attribute list

11/29/24 Mengwei Xu @ BUPT 71

NTFS Medium File

Start

Master File Table ength /5
1)
)]
X
0]
©
a
MFT Record Start + Lengthl__,
Std. Info. | File Name Data (nonresident) (free)
Start }
|
Length L
,\ .
)]
X
©
©
)
Start + Lengthl_,

11/29/24 Mengwei Xu @ BUPT 72

NTFS Large/Fragmented File

MFT
MFT Record
(part 1) :.:.........o.....................g,
Std. Info. | Attrlist | File Name | Data (nonresident)
1
A
MFT Record 3
(part2) o 5
Std. Info. Data (nonresident) (free)
- 51
JE g

73

11/29/24 Mengwei Xu @ BUPT

11/29/24

NTFS Multiple Indirect Blocks

MFT

MFT Record
(small file)

| Std. Info.] I

Data (resident)

MFT Record
(normal file)

I Std. Info. 1

[Data (nonresident) |

MFT Record

(big/fragmented file)

Data (nonresident) I

Data (nonresident)

: v
§~)D i-) . §~)
i D
>
e

Data (nonresident)

Data (nonresident)

i ,E] e >
H > :

: >
i

]

Ol

C

MFT

MFT Record
(huge/badly-fragmented file)

I Std. Info. I Attr.list (nonresident) I |

i___:_.... —_—_— e e e e = === g
i [Extent with part of attribute list :
O L

Even the attribute list
becomes nonresident!

Data (nonresident) I

Data (nonresident) I I
g..)D

0

Why it is possible??

Data (nonresident) l |

Data (nonresident) I

Data (nonresident) l I

iy = @

Mengwei Xu @ BUPT 74

NTFS Details

* File system metadata Is stored in files with well-known low-numbered
file numbers

File number O ($MFT) is the MFT itself

File number 5 is the root directory

File number 6 Is the free space bitmap

File number 8 contains a list of the volume'’s bad blocks

File number 9, called $Secure, contains security and access control information.

e [f MFT Is stored as a file, how do we read it..!?

- To locate the MFT, the first sector of an NTFS volume includes a pointer to the
first entry (why?) of the MFT.

11/29/24 Mengwei Xu @ BUPT 75

NTFS Locality Heuristics

* Best fit: where the system tries to place a newly allocated file in the
smallest free region that is large enough to hold It.

- In most implementations

* An important NTFS feature: SetEndOfFile() to specify the expected size
of a file at creation time.

- Why 1t is useful?

* To avoid having $MFT become fragmented, NTFS often reserves part of
the disk (e.g., the first 12.5% of the volume) for MFT expansion

- Why we didn't care about fragmentation in FFS? (doesn't mean there’s no
fragmentation in FFS! For example, still internal fragmentation)

- Recall: segmenting vs. paging

Memory Mapped Files

* Traditional I/O involves explicit transfers between buffers in process
address space to/from regions of a file

- This involves multiple copies into caches in memory, plus system calls

* What if we could “map” the file directly into an empty region of our
address space
- Implicitly “page 1t In” when we read it
- Write it and “eventually” page it out

* Executable files are treated this way when we exec the process!

11/29/24 Mengwei Xu @ BUPT 77

Recall: Who Does What, When?

PI”OCGSS\ , virtual address physical address

page#

iﬂS’[I’X’[iOﬂ —> MMU h frame#
/ \

| aukl 1 offset
exception ~ Pa8S 14Ul 4 w

Operating System offset Sy

/o\

,,,,,_,/Update PT entry
ace Fault Ha/r),dfl’er

oad page from disk

scheduler

11/29/24 Mengwei Xu @ BUPT 78

Using Paging to mmap () Files

Process virtual address

MMU

page#

PT

physical address

instr)étion —
/ \

frame#

offset —

EXCE(]

Read File

contents R —

Y

as "backed" by file

123

File

scheduler

mmap () file to region of VAS

11/29/24 Mengwei Xu @ BUPT 79

mmap () system call

MMAP(2) BSD System Calls Manual MMAP(2)
NAME

mmap —— allocate memory, or map files or devices into memory
LIBRARY

Standard C Library (libc, -1c)

SYNOPSIS
#include <sys/mman.h>

void x

mmap(;oid *addr, size t len, int prot, int flags, int fd,
off t offset);

DESCRIPTION

The mmap() system call causes the pages starting at addr and continuing
for at most len bytes to be mapped from the object described by fd,
starting at byte offset offset. If offset or len is not a multiple of

A by oo e e o —

N PP | M e S e e e e osed ool e Al e oemn oo £ S ol

* May map a specific region or let the system find one for you
* Tricky to know where the holes are

* Used both for manipulating files and for sharing between processes

11/29/24 Mengwei Xu @ BUPT 80

#include <sys/mman.h> /* also stdio.h -nE AT il .

int something = 162;

An mmap() Example

$./mmap test
Data at: 105d63058

int main (int argc, char *argv[]) 4 Heap at : 7f8a33c04b70

int myfd;
char *mfile;

Stack at: 7fff59e9dblo
mmap at : 105d97000

printf("Data at: %161x\n", (longd This is line one

printf("Heap at : %161x\n", (long
printf("Stack at: %161x\n", (long

/* Open the file */

myfd = open(argv[1], O RDWR | O_Cf
if (myfd < @) { perror("open failed?

/* map the file */

mfile = mmap(©, 10000, PROT_READ|

4 This is line two
This is line three
This is line four

if (mfile == MAP_FAILED) {perror(| $ cat test

printf("mmap at : %161x\n", (long

puts(mfile);

strcpy(mfile+20,"Let's write ove

close(myfd);
return 9;

This is line one
4 ThilLet's write over its line three
This is line four

Other File Systems..

* Copy-on-write (COW) file system: when updating an existing file, it
does not overwrite the existing data or metadata; insteaq, it writes new
versions to new locations

- Turning random I/O updates to sequential ones.

" New Data Block ["

. New Data Block []
" Update Indirect Block 3 .,

Update Inode |:|

Update Bitmap [J

[0l1d Bitmap
: 0 01d Inode

[Update Bitmap
: O Update Inode

Read textbook for more information!
11/29/24 Mengwei Xu @ BUPT 82

Goals for Today

* Directories: naming data
- How do we convert a file name to the file number?

* Files: finding data
- How do we locate storage block based on file number?

* Virtual file systems (VFS)

- How do we make different FSs work together easily?

file name file number Storage block
offset directory offset index structure

11/29/24 Mengwei Xu @ BUPT 83

History

* Early OSes provided a single file system
- In general, system was tailored to target hardware

* People became interested in supporting more than one file system type
on a single system
- Any guesses why!?

- Networked file systems: sharing parts of a file system across a network of
workstations

11/29/24 Mengwei Xu @ BUPT 84

Virtual File System (VFS)

userspace

procfs (/proc),
sysfs(/sys)

tmpfs (tmp),

devtmpfs(/dev) || €9"OUPS

menvensseeess DEViCedriiers

11/29/24 Mengwei Xu @ BUPT 85

11/29/24

Virtual File System (VFS)

User Level System Call
User Level

a:KemelLevel

Virtual File System
Cache f I I 1 \ Cache

Hold .

(rgo lar || Codq | NFS [EXt2 irectory
file ES ES Cache
data)

N

(Buffer Cache)

¥

Device Drivers

Disks Network

Mengwei Xu @ BUPT

86

Modern VFS

* Dozens of supported file systems
- Allows new features and designs transparent to apps
- Interoperability with removable media and other OSes

* Independent layer from backing storage
- In-memory file systems (ramdisks)

- Pseudo file systems used for configuration
A (/proc, /devtmps...) only backed by kernel data structures

* And, of course, networked file system support

11/29/24 Mengwei Xu @ BUPT 87

What the VFS Does

* The VFS Is a substantial piece of code
- not just an APl wrapper

* Caches file system metadata (e.g., names, attributes)
- Coordinates data caching with the page cache

* Enforces a common access control model

* Implements complex, common routines
- Path lookup
- Opening files
- File handle management

11/29/24 Mengwei Xu @ BUPT 88

User’s Perspective

* Single programming interface
- (POSIX file system calls — open, read, write, etc.)

* Single file system tree
- Remote FS can be transparently mounted (e.g., at /home)

* Alternative: Custom library for each file system
- Much more trouble for the programmer

11/29/24 Mengwei Xu @ BUPT 89

FS Developer’s Perspective

* S developer responsible for implementing standard objects/functions
called by the VFS
- Primarily populating in-memory objects
A Typically from stable storage
- Sometimes writing them back

* Can use block device interfaces to schedule disk I/O
- And page cache functions
- And some VFS helpers

* Analogous to implementing Java abstract classes

11/29/24 Mengwei Xu @ BUPT 90

High-level FS dev. tasks

* Translate between VFS objects and backing storage (whether device,
remote system, or other/none)

- Potentially includes requesting 1/O

* Read and write file pages

* VIS doesn't prescribe all aspects of FS design

- More of a lowest common denominator

* Opportunities: (to name a few)
- More optimal media usage/scheduling
- Varying on-disk consistency guarantees
- Features (e.g, encryption, virus scanning, snapshotting)

11/29/24 Mengwei Xu @ BUPT 91

Core VFS Abstractions

* super block: 5-global data

- Early/many file systems put this as first block of partition

* inode: (index node): metadata for one file
* dentry: (directory entry): name to inode mapping
* file object: pointer to dentry and cursor (file offset)

* 5B and inodes are extended by file system developer

11/29/24

Core VFS Abstractions

struct super block {
struct list head s list; /* Keep this first */

oooooo

s blocksize;

unsigned long long s maxbytes; /* Max file size */
struct file system type *s type’;
struct super operations *s op;
struct dentry *s root;
struct list head s _dirty; /* dirty inodes */
union {
struct minix sb info minix sb;
struct extZ2 sb info ext2 sb;
struct ext3 sb info ext3 sb;
struct ntfs sb info ntfs sb;
struct msdos sb info msdos sb;
void *generic sbp;
bous

Mengwei Xu @ BUPT

93

Core VFS Abstractions

struct dentry {
unsigned int dflags;
struct inode * d inode; /* Where the name belongs to */
struct dentry * d parent; /* parent directory */
struct list head d hash; /* lookup hash list */
struct list head d child; /* child of parent list */
struct list head d subdirs; /* our children */
struct gstr d name;
struct lockref d lockref; /*per-dentry lock and refcount*/
struct dentry operations *d op;
struct super block * d sb; /* The root of the dentry tree*/

unsigned char d iname[DNAME INLINE LEN]; /* small names */
} s

11/29/24 Mengwei Xu @ BUPT 94

Core VFS Abstractions

struct inode {

struct list head i dentry;

uid t 1 uid;

gid t 1 gid;

unsigned long 1 blksize;

unsigned long 1 blocks;

struct inode operations *i op;

struct file operations *i fop;

struct super block *i sb;

wait queue head t i wait;

union {
struct extZ inode info ext2 1i;
struct ext3 inode info ext3 1i;
struct socket socket 1;
void *generic 1p;

bous

11/29/24 Mengwei Xu @ BUPT 95

VFS Global Organization

file system type

\

superblock

vismount

Possibly belonging to other
file systems

1node children list

- \

11/29/24 Mengwei Xu @ BUPT 96

Embedded Inodes

* Many FSes embed VFS inode in FS-specific inode
struct myfs_inode {
int ondisk_blocks[];
/* other stuff*/

struct inode vfs_inode;

* Why! Finding the low-level from inode is simple
- Compiler translates references to simple math

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fal4/cse506.2/slides/vfs.pdf

11/29/24 Mengwei Xu @ BUPT 97

File System Summary (1/2)

* File System:
- Transforms blocks into Files and Directories
- Optimize for size, access and usage patterns
- Maximize sequential access, allow efficient random access
- Projects the OS protection and security regime (UGO vs ACL)

* File defined by header; called “inode”

* Naming: translating from user-visible names to actual sys resources
- Directories used for naming for local file systems
- Linked or tree structure stored in files

e Multilevel Indexed Scheme

- Inode contains file info, direct pointers to blocks, indirect blocks, doubly indirect,
etc..

- NTFS: variable extents not fixed blocks, tiny files data Is in header

11/29/24 Mengwei Xu @ BUPT 98

File System Summary (2/2)

e 47) BSD Multilevel index files

- Inode contains ptrs to actual blocks, indirect blocks, double indirect blocks, etc.

- Optimizations for sequential access: start new files in open ranges of free blocks,
rotational optimization

* File layout driven by freespace management

- Integrate freespace, inode table, file blocks and dirs into block group

* Deep interactions between mem management, file system, sharing
- mmap (): map file or anonymous segment to memory

11/29/24 Mengwei Xu @ BUPT 99

